报告题目:the complete kähler-einstein metric on a type of quasi-homogeneous forelli-rudin structure
主 讲 人:陈明明
单 位:首都师范大学
时 间:2024年5月24日 15:00-16:00
地 点:学院南阶教室
摘 要:it follows from the result of mok-yau that there exists the unique complete kähler-einstein metric on a pseudoconvex domain in cn. we want obtain the unique complete kähler-einstein metric on a type of quasi-homogeneous forelli-rudin structure ω. we will present the kähler potential function with some parameters satisfies a complex monge-ampère equation on a real 2-dimensional closed subset of ω. then by using the holomorphic automorphism, and the ricci curvature invariance under the holomorphic automorphism group, we derive the explicit expression of the complete kähler-einstein metric for the domain.
简 介:陈明明,河南大学2018级基础数学专业硕士,现就读于首都师范大学数学科学学院,2021级基础数学专业博士,导师王安教授,研究方向为多复变函数论。