题 目:on bmo functions and carleson measures via caffarelli-silvestre extension
主讲人:李波 讲师
单 位:嘉兴大学 数据科学院
时 间:2024年8月20日 9:00
腾讯id:786 234 374
密 码:081524
摘 要:this talk is concerned with the bmo-dirichlet problem for the elliptic equation under a general dirichlet metric measure space setting, where the heat kernel admits only the so-called diagonal upper estimate. more significantly, without the ricci curvature condition from brazke-schikorra-sire [imrn, 2022, no. 2, 1245-1269], we relax their ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel.
简 介:李波,嘉兴大学数据科学院讲师,研究方向为调和分析。目前主持国家青年基金项目、浙江省探索青年项目、嘉兴市青年科技人才专项,参与国家级项目4项,在sci china math、jde、jga、nagoya math j、proc roy soc edinburgh sect a、proc. edinb. math. soc. (2) 等国内外期刊发表sci论文10余篇。