讲师
太阳成集团tyc151cc-太阳成集团tyc7111cc >> 师资队伍 >> 全职教工 正文李培丽
姓名:李培丽
职称:讲师
办公室:九章学堂南楼c座301
邮箱:lipeili@henu.edu.cn
研究方向:统计优化
教育背景:2010.09-2014.06,学士,河南大学,数学与应用数学
2014.09-2017.06,硕士,河南大学,运筹学与控制论
2017.09-2020.06,博士,武汉大学,计算数学
工作经历:2020.07-2022.06,博士后,华东师范大学,统计学
2022.07-至今,河南大学,讲师
研究领域:运筹学、统计学
代表性学术论文:
1. yanyun ding, haibin zhang, peili li, yunhai xiao. an efficient semismooth newton method for adaptive sparse signal reconstruction problems. optimization methods & software, 2022, in press.
2. peili li, min liu, zhou yu. a global two-stage algorithm for non-convex penalized high-dimensional linear regression problems. computational statistics, 2022:1-28.
3. peili li, yuling jiao, xiliang lu, lican kang. a data-driven line search rule for support recovery in high-dimensional data analysis. computational statistics & data analysis, 2022, 174:107524.
4. peili li, xiliang lu, yunhai xiao. smoothing newton method for l0-l2 regularized linear inverse problem. inverse problems and imaging, 2022, 16(1):153-177.
5. yunhai xiao, peili li, sha lu. sparse estimation of high-dimensional inverse covariance matrices with explicit eigenvalue constraints. journal of the operations research society of china, 2021, 9(3):543-568.
6. can wu, yunhai xiao, peili li. semi-proximal augmented lagrangian method for sparse estimation of high-dimensional inverse covariance matrices. journal of applied and numerical optimization, 2020, 2(2):155-169.
7. peili li, yunhai xiao. an efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation. computational statistics & data analysis, 2018, 128:292-307.